Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Modeling of an Automotive Air Conditioning System and Validation with Experimental Data

2003-03-03
2003-01-0735
A 1-Dimensional model was developed to simulate the performance of an automotive Air Conditioning (AC) system. Its architecture and validation with vehicle test data (over a wide range of environmental and engine load conditions) are presented in this paper. This study demonstrates the ability of a simplified AC model to capture real system phenomena. Its sensitivity and limitations are evaluated, along with its potential as a system design tool.
Technical Paper

Stamping Simulation in Pentium PC and Linux Environment

2003-03-03
2003-01-0691
This paper describes the performance improvement and cost savings achieved by the Stamping Technology Department at DaimlerChrysler Corporation (Chrysler group), in migrating from Unix workstations with RISC technology to Linux PCs with Intel Pentium technology. Performance comparisons of various engineering applications running on these two system configurations are analyzed. The major aspects such as hardware configuration, operating system, software availability, compatibility, reliability, accuracy and consistency of simulation results are discussed. The improvement in computing speed and deviations in simulation results between MPP LS-Dyna and SMP LS-Dyna are presented.
Technical Paper

Estimation of the Effects of Vehicle Size and Mass on Crash-Injury Outcome through Parameterized Probability Manifolds

2003-03-03
2003-01-0905
One way to improve vehicle's fuel economy is to reduce its weight. Reducing weight, however has other consequences. One of these is reduced vehicle size. Almost invariably, lighter vehicles are smaller. Reducing vehicle weight has also been associated with a reduction in occupant protection; the lighter the vehicle, the greater the chance of injury when a crash occurs. For this study, a data-based model is used to evaluate the independent effects of size and weight. This model is constructed using the NASS database and information obtained from NCAP tests. The results indicate that although mass is the dominant factor, size also has an effect; some of the observed reduction in safety benefits associated with mass reduction is actually an effect of size reduction. The model is also used to evaluate the effects of varying stiffness.
Technical Paper

Injection Molded, Extruded-In-Color Film Fascia

2003-03-03
2003-01-1126
A new multi-layer co-extruded in-color Ionomer film is developed to provide an alternative decoration process to replace paint on Dodge Neon Fascias. The Ionomer film provides a high-gloss “class-A” surface in both non-metallic and metallic colors that match the car body paint finish. Using the Ionomer film to decorate fascias reduces cost; eliminates VOCs; increases manufacturing flexibility and improves performance (weatherability and durability). The molding process consists of thermoforming a film blank and injection molding Polypropylene or TPO behind the film. The paper will include the background, the benefits, the technology development objectives, the film materials development, tooling optimization, film fascia processing (co-extrusion; thermoforming and injection molding) and validation testing of the film.
Technical Paper

Computer-Aided Vehicle Design and Packaging Using Standard Naming Design Methodology

2003-03-03
2003-01-1302
Vehicle design and packaging is a repetitive and tedious process that involves frequent engineering and design changes. To improve design efficiency, a standard naming vehicle design methodology is proposed in this paper. For the geometric or the functional object used in the vehicle context, a standard name is assigned and also used as a unique object feature through its life cycle. With the proposed standard naming design methodology, the engineering knowledge can be efficiently embedded into the CAD design, and hence, vehicle design can be executed in a more automated fashion. Work case of the standard naming design methodology is illustrated by a vehicle design and packaging application using CATIA V5.
Technical Paper

Modeling of Strain Rate Effects in Automotive Impact

2003-03-03
2003-01-1383
This paper deals with the effects of various approaches for modeling of strain rate effects for mild and high strength steels (HSS) on impact simulations. The material modeling is discussed in the context of the finite element method (FEM) modeling of progressive crush of energy absorbing automotive components. The characteristics of piecewise linear plasticity strain rate dependent material model are analyzed and various submodels for modeling of impact response of steel structures are investigated. The paper reports on the ranges of strains and strain rates that are calculated in typical FEM models for tube crush and their dependence on the material modeling approaches employed. The models are compared to the experimental results from drop tower tests.
Technical Paper

Optimization of Damping Treatment for Structure Borne Noise Reduction

2003-05-05
2003-01-1592
In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatments. The developed method uses modal strain-energy information of bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. The efficacy of the method is demonstrated by optimizing damping treatment for a full-size pick-up truck. Moreover, simulated road noise performances of the truck with and without damping treatments are compared, which show the benefits of applying damping treatment.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Computer Modeling on Exhaust System Heat Transfer

1992-02-01
920262
A computer modeling algorithm based on the finite volume method has been developed in order to predict temperature distribution along an automotive exhaust system. The heat transfer equations developed include the forced convection inside the exhaust component and natural convection and radiation outside the component. The exhaust system is divided into a series of components. Each component can be further subdivided into a number of finite volumes. The heat transfer equations based on the energy conservation principle have been derived for each component. An iterative algorithm is used to solve for exhaust gas and component skin temperature. Then the profile of exhaust gas temperature and component skin temperature along the exhaust system can be obtained. The correlation study shows the temperatures predicted by the modeling program agree with the test data.
Technical Paper

Simulation Method of the Exhaust System on a Durability Bench

2011-10-04
2011-36-0228
The durability certification is one of the critical paths of a mass production vehicle project. For structural components, the development and the execution of experimental tests supported by finite element method (FEM) became mandatory for implementation time reduction, especially when on-board diagnoses (OBD) legislation turns even small cracks in severe structural failures. This job aims to show a simulation method of structural efforts in an exhaust system on a test bench. The exhaust pipe is previously analyzed with FEM and the critical points are instrumented with strain gage in vehicles. The strains are measured and its values reproduced in a dynamometer bench using a shaker with adjustable amplitudes. Therefore, difficulties to reproduce temperature and strain were overcome and the test shows repeatability. The variation of shaker device amplitude makes it possible to define the life cycle curve of the part.
Technical Paper

Attempts for Reduction of Rear Window Buffeting Using CFD

2005-04-11
2005-01-0603
This paper summarizes the major activities of CFD study on rear window buffeting of production vehicles during the past two years at DaimlerChrysler. The focus of the paper is the attempt to find suitable solutions for buffeting suppression using a developed procedure of CFD simulation with commercial software plus FFT acoustic post-processing. The analysis procedure has been validated using three representative production vehicles and good correlation with wind tunnel tests has been attained which has gained the confidence in solving the buffeting problem. Several attempts have been proposed and tried to find solution for buffeting reduction. Some of them are promising, but feasibility and manufacturability still need discussion. In order to find suitable solution for buffeting reduction, more basic research is necessary, more ideas should be collected, and more joint efforts of CFD and testing are imperative.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

Flow Uniformity Optimization for Diesel Aftertreatment Systems

2006-04-03
2006-01-1092
In 2007 emissions regulations for on-road light to heavy duty Diesel trucks will require the use of Diesel Particulate Filters (DPFs). The uniform distribution of soot on the DPF is critical for adequate long term performance of these DPFs. This is especially true when cordierite is used instead of silicon carbide for the DPF substrate, due to the reduced thermal conductivity and reduced peak temperature capability of cordierite. In addition to flow uniformity, an inverted flow pattern where more of the flow is forced radially outward on the substrate face could be beneficial to counteract thermal losses in the converter. This paper describes a dispersion device that can improve flow geometry with a low backpressure penalty. Computational fluid dynamics (CFD) results and experimental data are presented for this device. Additionally, cone design options are explored, and CFD analysis results of the cone design are presented.
Technical Paper

Truck Frame Motion Prediction and Correlation

2006-04-03
2006-01-1257
Accurate motion prediction can be used to evaluate vibrations at seat track and steering wheel. This paper presents the prediction and correlation of truck frame motion from wheel force transducer (WFT) measurements. It is assumed that the method can be used to predict vibrations at seat track and steering wheel for unibody vehicles. Two durability events were used for calculation. WFT measurements were used as inputs applied on frame from suspension. Frame loads were then used as inputs to calculate frame motions using a FEA approach. The predicted frame motions are represented by four exhaust hangers and they are compared with measured motions of the same locations. The correlations include displacement, velocity, and acceleration. It is shown that good correlations are obtained in velocity and displacement. Acceleration shows bigger differences than velocity and displacement.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Reliability and Robust Design of Automotive Thermal Systems - A Federated Approach

2006-04-03
2006-01-1576
Today automotive thermal systems development is a joint effort between an OEM and its suppliers. This paper presents a pilot program showing how OEMs and suppliers can jointly develop a reliable and robust thermal system using CAE tools over the internet. Federated Intelligent Product Environment (FIPER) has been used to establish B2B communication between OEMs and suppliers. Suppliers remotely run thermal systems computer models at the OEM site using the FIPER B2B feature.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
X